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ABSTRACT

The present report develops electrical analogs to investigate

multiple cracks on simple beams and more complex frame structures.

Analog networks provide the economic tool to analyze such structures.

The effect of multiple cracks on the natural frequencies of simple struc-

tures is studied in detail. It is shown that closely spaced multiple

cracks are indistinguishable from an effective single crack. A severe

crack on a structure can be identified if there are only minor cracks in

addition to the major one. If, on the other hand, there is more than one

severe crack, then the damage cannot, in general, be diagnosed with only

three frequencies measurable. Nevertheless, a minimum number of cracks

which are likely to be present in the structure can be established.

Characteristic equations are developed in the form of linear systems

for cantilever beam and general frame structures with multiple cracks.

Usefulness of relative-frequency-change curves are demonstrated and rough

guidelines are provided to aid the damage diagnosis process. Several

numerical examples are included which illustrate the effect of multiple

cracks on frequencies.
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NOMENCLATURE

Symbol

a crack length

b half depth of a flexural member

e location of the crack on a beam with only one crack

e1 (= Li/L) distance between i-lst and ith cracks on a simple beam;
length of the ith beam segment in a frame structure

e eq location of the single crack which is equivalent to a group
of cracks (the definition of equivalence is given on p. 24)

E modu us of elasticity

Ei, E1 2 voltage sources in analog T circuit for the ith beamsegment, Equation (10) (no subscript i for a one-member

structure)

Gi, Gio conductances in analog In circuit for the ith beam segment,
Equation (22) (no subscript i for a one-member structure)

h L2/EI0 2 (subscripted when referring to the ith segment)

I area moment of inertia
Iil Ii2 current sources in analog I circuit for the ith beam

segment, Eq. (23)

k total number of cracks on a structure

k ckg) total number of column (girder) cracks on a frame structure
cg9
L,L0  length of a beam; characteristic length for a structure

LI i distance between i-1st and ith cracks on a simple beam;
length of the ith beam segment in a structure

m number of spans of a frame structure

m vector of unknown moments

Mi  resisting bending moment at the 1-1st crack in a cantilever
1

M M resisting moment at the two ends of the ith beam segment
11' Mi2 (no subscript i for a one-member structure)

n ij defined in Equation (66)

P, P' variables of the analog n! circuit, Equation (20);
Q, Q, subscripted when referring to the ith segment

v
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Rj relative change in jth modal frequency 1 - wj/uj

R. relative change in jth frequency due to an equivalent crack
eq causing the same change in two other frequencies as the

actual damage

S,S',TT' T circuit variables, Equation (7); subscripted for the ith
segment

U matrix of resistances or conductances

VillVi2 resisting cross-shear at the two ends of the ith beam
segment

W, W' II circuit variables, Equation (20); subscripted for the ith
segment

X coefficient matrix of m or y', Equations (30), (69)

X(j )  submatrix of X corresponding to the ith wall of the
structure

Yi transverse deflection at the ith crack; horizontal dis-
placement of the ith floor

yi'Y, transverse deflection at the two ends of the ith beam

segment (no subscript i for a one-member structure),

y vector of transverse deflections

!y rotation of the ith node (prime does not imply derivative)

-, rotation of the node r' immediately to the right of or
above a crack

Yil' Y12  rotation at the two ends of the ith beam segment

Zi• Zi0  resistances in T circuit for the ith segment, Eq. (9)

Z coefficient matrix of y, Eqs. (30), (69)

a defined in Equation (20)

B characteristic value; 04 = W2pL4/(EI)

Ou characteristic value of the undamaged structure

I0 U )  jth characteristic value

" (J) jth characteristic value for the structure with an equiva-
eq lent crack having two other characteristic values in common

*• with the actual damaged structure
4 *v
4

I
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B(j) jth characteristic value for the actual damaged structure
actual

Si characteristic value for the ith beam segment

y fracture damage = a/b

K torsional spring constant of the fracture hing

V Poisson's ratio

p lineal mass density

ei  sensitivity number for the ith crack on a simple beam;
sensitivity number for the crack on the ith member of a
frame structure

Beq sensitivity number for a crack equivalent to a group of
cracks

wj jth modal frequency

Wuj jth modal frequency of the undamaged structure

$

vii
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1.0 INTRODUCTION

The study of damage diagnosis stems from the need to assess relia-

bility of structures which have been subjected to unusual levels of

excitation. Such a diagnosis problem requires the availability of an

analytical model and of measurements of some structural characteristics

to be used as inputs to the model. The present investigation utilizes

the modal frequencies of the structure in detecting and identifying

fracture damage. Damping will later be incorporated into the model.

Determination of the crack location and intensity in simple struc-
tures with only a single crack was studied in [l)1. There it was shown

that a crack can be simulated with fracture hinges representing the

softening effect. The classical modal shapes for the beam elements wer
assumed; the boundary conditions were imposed; and the resulting set o

homogeneous equations were solved in terms of the modal frequencies.

Since there are four coefficients associated with the modal shape of each

beam element, the order of the resulting system is four times the number

of beam elements in the structure. The approach soon loses its feasibil-

ity as the structure becomes more complicated. The present report

describes another approach, namely, the use of electrical analogy in

structural analysis, which greatly economizes on computation of modal

frequencies of complicated frame-structures.

The introductory work on electrical analogues for solving static and

dynamic problems of elastic structures is surveyed in [2). The tech-

niques presented there are suitable for analog computer applications. In

this report, a modified and improved approach to free vibration is devel-

oped which is readily formalized and adaptable to digital programming.

Electrical analogy is further developed to simulate cracks. The applica-

tion of the newly developed technique is extended to investigation of the

behavior of multiple cracks on structures. When the method is applied to

free vibration of multi-story multi-span frame structures, natural freq-

uencies of the analog circuit, hence modal frequencies of the frame, can

lNumbers in brackets denote the references.
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be determined by exciting the circuit with a variable frequency excita-
tion and by establishing the excitation frequencies at which the response
is maximum. Analytically this corresponds to finding zeroes of a deter-
minant. The order of the system for a multi-cell structure without crack
is equal to the number of nodes. The order increases by two for each
crack present.

N2



2.0 BASIC ANALOG CIRCUITS

The mode shapes of a Bernoulli-Euler beam under transverse vibration

are given by

y() * A coshB& + BsinhBg + C cossE + D sineg (1)2

where -4 p(02L 4/EI; p is the lineal density; w is the modal frequency; L

is the beam length; (El) is the beam stiffness; and C = x/L is the
normalized axial coordinate. Four variables are associated with each end

of the beam element, namely, deflection, slope (or angle of rotation),

resisting moment, and shear force (Fig. 1). From Equation (1) and its

appropriate derivatives at g = 0, the variables at the left end are

obtained:

Y, A+ C

y' =- + 6IsIL

M = ( - C)EI8 2/Lz  (2)

V, = ( - §)EI0 3/L3

Equations (2) can be solved for the four coefficients in terms of the

four variables

A = (y + hMl)/2

= (y - hV,)L/28
"-" (3)
C = (yl- hM,)/2

= (YA + hV,)L/2s

:':L 
--

Figure 1. Beam Element under Free Vibration.

5' 
2Nlumbers in parentheses denote the equations.

3
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where h = L2 /EI 2 . The variables at the .right-end of the beam element

are obtained from Equations (1) and (3) with = 1. The result is

Y2 = Ay, + ByIL/s + CMjh - DVhL/S (4a)

yj = DylS/L + Ayj + BMIL/EIs - CVth (4b)

M2  = Cyi/h + DyjEIs/L + AM1 - BVIL/B (4c)

V2  = -Byjs/hL - Cyj/h - DMt41 /L + AV, (4d)

where

A = (cosho + coso)/2 B = (sinho + sins)/2
(5)

C = (cosho - coss)/2 D = (sinho - sins)/2

Any four of the eight variables in Equations (4) can be solved for

in terms of the remaining four variables. The mathematical analogy

between electrical circuits and beams is based on the liner transform

(4). The type and properties of the resulting circuit depend on the

choice of the independent variables. In this study, angles of rotation

are analogous to voltages and resisting moments are analogous to electri-

cal currents.

2.1 T Circuit

When it is imposed that sins * 0, slopes and shears can be expressed

in terms of resisting moments and deflections. Thus, from Equations (4)

yj -hS -hT -S' T' M,

A hT hS -T' so M2

a 1 1 (6)

V1  S -T1 S/h T/h yj

62J To -S' -T/h -S/h Y2

where h - L2/EI0 2 and

S - coths - cots s' = coths + cots
(7)

T = cscs - cschB T' = cscs + csch(

4

.. . .*. *.. -... *..'-..-.--. .;.% ****.'.* .* **. .., - . . .. L.;':' ''';. ": ' ,."
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The first two equations in (6) can be rewritten as

A = (Z + Zo)M 1 - ZoM 2 + El

(8)
yl = ZoM1 - (Z + Zo)M 2 + E2

where

Z = - (S + T)L/2EIB Zo = TL/2EIo (9)

El = (T'y2 - S'yl)s/2L E2 = (Sy2 - T'yl)o/2L (10)

Equations (8) are the Kirchhoff's equations for the active

three terminal network shown in Figure 2 (T circuit)3 with slope and

moment (y', M) being analogous to electrical voltage and current,

respectively. The quantities Z and Ei denote resistance and voltage

source, respectively. Negative resistance poses no difficulty in

analytical and numerical analyses. The ends of a beam segment are

simulated by the ports of the circuit. It must be observed that the

electromechanical analogy described above does not simulate the

differential equation of motion, but instead the solution based on the

assumption of harmonic motion [2].

Boundary conditions at the ends of a beam element can be simulated

as follows:

a. Free end or simply-supported end, M = 0: the corresponding port

of the circuit to be left open (for zero current).

b. Fixed end, y' = 0: the corresponding port to be short-circuited

(for zero voltage).

The other boundary conditions at these ends and the last two equations in

(6) are utilized to express the voltage sources, Equations (10), in terms

of the moments, as will be Illustrated with a cantilever beam problem

(Figure 3). The Kirchhoff's voltage law applied to the loop yields

(Z + Zo)M 1 + E1 = 0 (11)

3Refer to the appendix for the development of the circuit equations.

5

* .'~ *..



IZ Z F .E 2

yi zo Y2

Figure 2. T-circuit Analog of a Beam under Free
Vibration.

2

yl=y,=O M2 V2O

E1  Z Z E2

Figure 3. Cantilever Beam and its T-circuit Analog.
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where Z is the analog resistance. From the last equation in (6) with

YI U M2 = O,

V2 a 0 - (T'M1 - SY2 /h)B/2L (12)

from whi ch

Y2 a hT'M 1/S and El a T12M1 L/2EIsS (13)

The second equation in (13) is obtained from Equation (10).

Substitution of Equations (9) and (13) into (11) and the fact that

M, 0 result in

T'2/S - S - 0 (14)

which yields the characteristic equation of a cantilever beam,
1 + coshB csca = 0.

In derivation of Equations (6), it is theoretically sound to impose

that sine * 0. However, during the numerical search of the natural

frequencies, sino may get very small at some point, or the structure may

actually have frequencies at or near sino a 0. We shall then take into

consideration that a is directly proportional to the length L of the beam

element. Thereby, this problem can be solved by dividing the beam Into

two sections and representing each section by an individual circuit.

This will be illustrated with a simply-supported beam. The beam is arbi-

trarily divided into two elements with a length ratio of 4/6 (Fig. 4).

-'1 20

*ELZ, Z, Elz ka1 ZZ _ z

11 T -
SZ)

Figure 4. Simply-supported Beam Represented with

Two Elements and its Analog Circuit.

7

* eAd



With reference to the figure, the continuity conditions in slope and

moment (voltage and current) at the common boundary is preserved under

the cascade connection of the two basic circuits. The loop equation then

yields

(ZI + ZIo + Z2 + Z20)M12 - E12 + E21 = 0 (15)

Since deflection is continuous at the interface (i.e., Y12 = Y21), it can

be shown that

E12 'SIY 1201/2L E2 - S2'YI202/2L2  (16)

where L, = .4L, L2 = .6L, 01 - .48, and 82 = .6o with s8 = 0s2L/EI.

From Newton's third law V12 = V2 1, or

Y12 - M12 (Si + SD/(S 1 + S2) (17)

" Equations (9) and (15) through (17) can be combined to yield the fre-

quency equation

(S1' + S21)2 - (S1 + S2)2 = 0 (18)

It is to be noted that for the particular sectioning in this illustra-

tion, the same problem will arise at the fifth natural frequency where BI

= 2w and 02 = 3w. Then the same procedure can be applied by further

sectioning the beam. Better initial sectionings are of course possible

than the one presented.

2.2 ji Circuit

Similar to the case of Equation (6) in the T circuit, Equation (4)

can be rewritten such that resisting moments and shears are expressed in

terms of deflections and slopes; that is,

M,4 QL/s WL/s Q' W' Y1 l

M2  -WL/O -QL/8 -W' Q' Y2'
-p

(19)
V, Q6 W' PO/L -P'o/L Y1

V2  W' Q' P'B/L -Po/L Y2

"" 8

V p. ;MPOr
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-..

where

- P = (coshe sins + sinho coss)/a P' = (sinho + sino)/h

Q = (cosh sins - sinho cosB)/ Q sinh sino/a

W = (sinho - sin=)/a W (cosho - CosB)/i (20), . W a=c(sihB osiB)/1*W
• . a = cosho coso - 1 * 0

The first two equations in (19) can be rewritten as

M, = (G + Go)y 1' - GoY 2' + Il

= Goy ' - (G + Go)Y2 ' + 12 (21)

where G and I are the analog conductance and current source,

respectively, given by

G = (Q + W)EIB/L Go = -WEIB/L (22)

I,- (Q' - Wy2)/h 12 = (y 2 - W'yl)/h (23)

Equations (21) are the Kirchhoff's current equations for the active three

terminal network shown in Figure 5 (IT circuit)4 with G and I denoting a

conductance and a current source, respectively. The pair (M,y') are

again analogous to current and voltage. It must be noted that a II

circuit can be derived by directly inverting the system in (6). However,..-
the resulting derivation requires more computational effort in solution

of frame-structures. As an illustration, the cantilever beam of Figure 3

will now be simulated with a ii circuit. The left port of the circuit in
.' Figure 5 is shorted yielding the circuit of Figure 6. The node voltage

" equation is

(G + Go)Y 2 ' - =0 (24)

The last equation in (19) with y = yl' = V2 = 0 yields

y2 = LQ'y2'/OP (25)

4Refer to the appendix for the development of the circuit equations.

4-,.: 9
.4.
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, y' Go y2 M42

SIi ~ G G I2

0"0

Figure 5. lI-circuit Analog of a Beam under Free
Vibration.

Y2 M2

-i

Go G 1

* Figure 6. Analog fl-circuit for a
Cantilever Beam.
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The characteristic equation is obtained by substituting Equations (22,

23, 25) into (24). Namely,

Q - Q 2/P = 0 (26)

With reference to (20), Equation (26) is equivalent to 1 + coshocoso = 0,

if 1 - coshBcosB * 0. When the value of a, Equation (20), approaches

zero, numerical computation diverges. Similar to the approach in T

circuit, the beam can be subdivided into elements as described in the

previous section.

2.3 Simulation of Crack with Circuit Analogy

tureA cracked section in a beam is modeled following the method of frac-

ture hinge [1]. The crack is mechanically represented by a torsional

spring of spring constant K. Slope is thus discontinuous at the cracked

- section, the discontinuity being given by Ay' = Mc/c. Such a disconti-

nuity is analogous to a voltage drop in the circuit theory. The crack

can then be simulated with a resistor of resistance -1/. Hence, a beam

with a single crack is represented by two circuits (T br I) joined by a
"crack resistance," -I/ic. Examples will be given in the next chapter

where it will also be shown that crack intensity is quantified by the

nondimensional sensitivity number 0 - EI/cL Ell.

0
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3.0 MULTIPLE CRACKS ON SIMPLE BEAMS

In this investigation, damage diagnosis is based on the knowledge of

the new modal frequencies after the damage has occurred, together with

the knowledge of the material properties. If there are uncertainties

about the material properties, then the frequencies must be measured

prior to the damage also. This point will be explained in Section 3.2.

Each crack in a structure is characterized by two variables associ-

ated with it, namely, location (e) and intensity (y). When these charac-

teristic variables are known, changes in the frequencies can be computed

with the method presented in this chapter. This will be called the

forward problem. The inverse problem of locating and identifying the

cracks, however, requires (2k + 1) measurements of frequency, where k is
the number of cracks present. The extra measurement is needed to pin-

point the cracks because of the multiple-valuedness of the equations.

Only in some special cases, 2k measurements are adequate to accomplish

the task. On the other hand, the number k is not known a priori in a

practical situation. Besides, in practice, it may not be possible to
measure more than the first few modes. In application it is not possible

to locate and identify the cracks deterministically when k is greater

than two. However, valuable insight may be gained by investigating the

forward problem.

This chapter studies the group behavior of multiple cracks on simple

beams. Guidelines are presented for damage diagnosis involving multiple

cracks. Examples are given to illustrate the applications of these

guidelines.

A beam with k cracks can be represented by k+1 circuits joined by

resistors simulating the cracks. The unknowns in the T-circuit analogy

are the moments (currents) at the cracks and at the ends of the beam.

Hence, there are (k+1) unknowns. On the other hand, the unknowns in the

n-circuit analogy are the slopes at the ends of the beam and at the

cracks. There are two unknown slopes at each crack. Hence the order of
the system is larger with n circuits. The T-circuit analog is found to

12



be more suitable for multiple-crack analysis. Therefore this section

develops the characteristic frequency equation for the general case,

establishes the conditions under which multiple cracks become equivalent

to a single crack, and illustrates the inverse problem when k = 1.

3.1 Cantilever Beam with Multiple Cracks

Figure 7 depicts the analog circuit for a cantilever beam with k

-' cracks. Continuity of moments at the cracked sections is preserved via

the continuity of electrical currents through the "crack resistors,"

-1/Ki. The order of the system of mesh current equations is (k + 1).

Namely,

(ZI + Zlo)Ml - ZloM 2 + Ell = 0

-ZloMl + (Zl + ZIo + Z2 + Z20 - I/Kl)M 2 - Z2 0M 3 - E12 + E21 a 0

. (27)

"ZkoMk + (Zk + Zko + Zk+l + Zk+190 - /ick)Mk+l - Ek2 + Ek+lo 0

From Equations (10), the analog voltage sources {E1 JI are:

Ell Tll 0 0 Y

E12 S1' 0 Y2

E21  -S2' T2' 0 y3

- (28):E22 -T2  S2' y4

E 0 -T.
I ,: . .

"k2 0 . . . k Sk 0 Yk

- E 0 . -T 0'k+l, 0.k+1 k+1 Yk+!

i h.

where yj is the deflection of the ith cracked section and Yk+l is the

*' deflection of the free end. These deflections are solved for by imposing

130,2,
4'...
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Figure 7a. Cantilever with k Symmetrical Cracks.

K1  K2  Kk

Figure 7b. Equivalent Fracture-hinge Model
of the Cantilever in Figure 7a.

Ell Z, Z, E12 -1/ E2 1 Z 2  Z2  E2 2  -l/K2 Ek+l,l Zk+ i Zk+l Ek+,2

IZo 
(Z20 Z k+l,O

S MI+ M

t,,

Figure 7c. T-circuit Analog for the Equivalent Model of Figure 7b.

14

l ~ -



4-.'

the shear boundary and continuity conditions. That is,

V12 = i+1,1 i = 1,2,...,k (29)

-. k+1,2

where the first subscripts refer to the numb%-s of the elements within

the beam and the second subscripts 1 and 2 denote the left and right ends

of the corresponding elements. Substituting the last two equations in

the T-circuit equations (6) into (29) and rearranging, we obtain

-Z = - (30)

where y and m are vectors of deflections and mesh currents, and Z and X

are square matrices of order k+l given by

SJ+S2 T2  0 0

T2  S2+S3  T3

0 T3  S3+S4  T4

-z(31)

;. 4 Tk+1

0 T k+ Sk+

Tj -IIS2 T 10 . . . 0II T
T7 -S1-3 3'-S'  2

X =T31 -S3'-S' (32)

'..Tk

4.

0 T ,
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Hence, Z is a tridiagonal symmetric matrix and X is an upper triangular

band matrix with a band width of 3. Solving for y from Equation (30),

provided Z is non-singular, we have

y - hZ-X m (33)

Substituting (33) into (28), and then the result into (27) along with the

analog resistances from Equations (9)

(XTZ-X - U)m =0 (34)

where

S, T, 0 0

T, SI+S 2 +2eBo T2

U-= 0 T2  S2+S3+2e2 " (35)

Tk5% -

0 Tk  Sk+Sk+ + 20ks

with ej being the sensitivity number for the jth crack given by [l]

e= EI/Li. = 3w(l - v 2 M b)f Xf(X) ]2 d (36)
J .J 0

where y = a/b is the relative crack depth (Fig. 7a) and f(y) is the

dimensionless fracture intensity factor for symmetric cracks El], namely

f(y) = (1 - y)- 5 11.122 - 2.363y + 4.367y2 - 4.88y3 + 2.845y4 - 0.663y5 ]

(37)

As Equation (36) implies, ej is based on the total length of the beam.

For non-trivial solutions of (34), the determinant of its symmetric

coefficient matrix must vanish, yielding the characteristic equation

T 1-

det (XTz XU)= 0. (38)

-.
1
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When the crack spacings (ej) and sensitivities (ej) are known, the

natural frequencies can be computed from Equation (38). In computing the

matrices in Equation (38), the variables Si , Ti , S, T; (Equation 7) per-

taining to the ith beam segment are computed using ej (Lt/L)o

where 0 is based on the total length of the beam.

3.2 Damage Diagnosis with a Single Crack

Damage diagnosis using the present model is accomplished with the

- knowledge of frequencies after the damage has occurred. Since the

characteristic equations of structures are in terms of dimensionless

characteristic values {B}, the material properties EI and p must be known

accurately to compute {0} from the measured frequencies (wi. If the

properties are known, then B can be computed from

-- Lpw2/EI) / 4  (39)

When three measurements of frequency are available for the case

k = 1 (single crack), exact location (e) and severity (e) of the crack

. can be determined. The procedure will' be illustrated with the cantilever

beam problem developed in the previous section. The coefficient matrix
in Equation (34), with k = 1, is of the form

xTz-Ix - U =1h 2l h 1 H(B,e,e) (40)
a - [h12  h22 -

2eolJ '

where the B values in Equation (40) are the post-damage values computed
.4

from Equation (39). The damage characteristics e and e are to be deter-

mined from the determinant of H, which can be written as

.a... det[H(s,e,e)] = det[H(B,e,0)]- 2e8hl1 = 0 (41)

where e = Li/L is the normalized crack location. It is noted that when

0 assumes the pre-damage values foul, det[H(8,e,0)J is equal to 0; that

is, this term is the characteristic equation for the undamaged (0 = 0)

beam. There are three equations emerging from Equation (41) for the

three known characteristic values. A numerical code for damage diagnosis

.. '.,
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has been developed in which e is varied through the range (0,1). e is

computed, for a given e, using the first known characteristic value in

Equation (41), namely,

6(e) = det[H(s() ,e,O) /2B ( hl  (42)

where the superscript on a denotes which characteristic value is used.

Then with the second known characteristic value, s(2),

det[H( (2,e)] = 0 (43)

where the value of e is now substituted from Equation (42). A zero-

searching routine is used to find the roots of Equation (42) which, in

general, yields multiple solutions for e. 0(3) can then be used to

locate the crack. With e known, e is computed from (42).

A,. In the case when the beam deviates somewhat from the Bernoulli-Euler

theory or when the material properties are uncertain, computing (S} from

Equation (39) may not be suitable. The knowledge of modal frequencies

prior to the damage is then necessary. Since w and wu are proportional

to 0 2 and B2, respectively, where w and u are the values for the pre-u u u
damage structure, and a and a are the post-damage values, the following

relation holds:

"" u (=/=) 1/2,. . = au W W )(44)

* It is assumed in (44) that the proportionality constant between 
0 u and 8u

does not change after the damage has occurred. The characteristic equa-

iV - tions do not involve any material properties and {0u} can be computed

from the characteristic equation for the undamaged structure. With

( ul and {w} measured in the field, (B can then be computed from

Equation (44) and the above procedure can again be employed to determine

e and e. Only the beam length L, the Poisson's ratio v, and the slender-

ness ratio (b/L) are required to determine the actual crack location L,

and the crack depth a (Eq. 36). Since v is nearly the same for most

18
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* metals, the theory becomes independent of the specific material of the
structure if the material is a metal, if the damage is presented in terms
of L, and a, and if {0) are computed from Equation (44). The theory is
totally independent of the material properties and dimensions if the

damage is presented in terms of e and e. The data are more conveniently
presented versus the relative frequencies (c5/wu) or the relative fre-
quency changes (1 - w/wu) rather than versus the absolute frequencies,

whether W~ are computed from Equation (39) or (44). In this investiga-
tion, relative changes are chosen as the means to convey the numerical

resul ts.

In practice, the response of structures deviate from the Bernoulli-

Euler theory. It is therefore more accurate to compute (S1 from Equation

(44). Equation (44), in effect, adjusts the parameters of the specific

structure such that the structure frequencies match those predicted by

the Bernoulli-Euler theory.

In practice, especially for structures whose frequencies are close
* to each other, the reduction in a certain frequency due to damage may be

small while the reduction in the next frequency may be large enough that

the post-damage value of the latter frequency may drop below that of the

former. This phenomenon is called cross-over. When cross-over occurs

and when one is not aware that it has occurred, the correspondence estab-

lished between the pre-damage and the post-damage values of the frequen-

cies will be in error. If, in such a case, one uses Equation (44), which

involves the ratio of the pre-and post-damage values of the frequencies,

the computed characteristic values will be incorrect. On the other hand,
6 if Equation (39), which involves the structural properties, is used, a

knowledge of the pre-damage frequencies is not required. Hence, it

becomes immaterial which pre-damage frequency a certain measured post-
damage frequency corresponds to; the important point is that there are

some frequency values available which satisfy the post-damage character-

istic equation (Eq. 41.). If the structural properties are uncertain,

they can be identified by measuring one frequency prior to the damage.

That is, the constant K in the relation 0 = Kw~/ can be determined by

measuring one wu and computing the corresponding Su from the pre-

damage characteristic equation. The same constant can later be used to

19



compute all the needed post-damage characteristic values B from the

measured post-damage frequencies w by means of B = Kw/. In this case,

however, the Rj values cannot be used to present the data, since the

ordering of the post-damage frequencies according to the magnitudes of

their values does not correspond to the pre-damage ordering, unless the

fact that cross-over has occurred is known.

3.3 Equivalence of Multiple Cracks to a Single Crack

3.3.1 Approximate Characteristic Equations

In this section, we study the conditions under which the identifica-

tion of multiple cracks is not readily distinguishable from that of a

single crack. For this purpose,equivalence of two cracks on a simply-

supported beam to a single crack is first established analytically.

Numerical results for larger numbers of cracks are then presented. It is

established that, when equivalence holds, solution to the inverse problem

of damage diagnosis cannot differentiate between single and multiple

cracks.

Figure 8a depicts a simply-supported beam with a single crack and

its T-circuit analog. The mesh current equation together with the Equa-

tions (9) and (10) yield

-(S1 + S2 + 2eB)M - (Sl' + S2 ')y/h - 0 (45)

where M and y are the resisting moment and deflection at the cracked

section, respectively. The continuity condition V12 = V21 at the crack

allows y to be solved for in terms of M. The characteristic equation for

beam with a single crack is thus

(Si ' S2')
2/(S1 + S2) - (S1 + S2 + 296) = 0 (46)

With reference to Figure 8b, the characteristic equation for the case of

two cracks is obtained in the form of Equation (38) with

20
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rS1S1 T1S+s, T2]
T 2 1S -SS3' T2 S2+S3] (47)

U , 1+S2+2010 T2

L T2 S2+S3+2020

Now, assuming that the spacing between the-cracks is sufficiently small,
that is, e2 = L2/L = e; we obtain the following approximations:

cosh e2e " 1 + (¢e)2/2 , sinh e28 & C$ + ()3/6

(48)

cos e20 " 1 - (ES)2/2 , sin e20 * o- (€o)3/6

It then follows from Equations (7) that

S2 2/3 S 2' /B , T2 = €B/3 , T2 ' A 2/€o (49)

Substituting (49) into (47) and performing the necessary operatl6ns, we

*T have, for the matrix of coefficients in (34),

T-i - I (s r (S1  h
" xTz-1x - U+ + 1 (50).( -(d ) 1 h12  h22

where
U,

d = S1S3 + 2(S1 + S3)(eo)/3 + US)2/3

hit = 4(2 + SIS3)/€e + I S3 + 4St - SIS3(St 291B)]

h12 - -2(4 + S;S3 + SjSj)/eO - 2(S1 + S3) (51)

I '2 Ih22 = 4(2 + SjS 3)/o + [SiS3 + 4S3 - S1S3 (S3 + 2e28)J

The above analysis is valid at points where S1, Sj', S3, S3' are of

smaller order of magnitude than (1/e1). The characteristic equation for

the two crack case is thus

22
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det(XTZ-lX- U) a SS ( S31 )2

-(S1 + S3)ES1 + S3 + 2(el + 82)011 + O(l/CO) = 0 (52)

When Equations (46) and (52) are compared and it is noted that S1, S14,
S2S2 in Equation (46) are nearly equal to S1, S1', S3, S3', respec-
tively, in Equation (52) for small values of e2, it can be established

that the difference between the characteristic equations for one- and
two-crack cases is of the order of the product e28; that is, the differ-
ence is larger for higher modes. The effective sensitivity number for
the two cracks approximates, as shown in (46) and (52), the sumn of the

individual sensitivity numbers, 8 = 81 + 02- It is shown numerically
-~ that closely spaced multiple cracks in general cannot be differentiated

from a single equivalent crack.

* Similar results are present for a clamped-clamped beam. In the case
of a cantilever beam, however, the expressions are more complicated.

Numerical results for a cantilever beam indicate the existence of an
equivalent single crack to closely spaced multiple cracks. Since within

10-15% distance of the free end of a cantilever beam frequency changes
S are small, the numerical results are not very reliable in that region.

Equivalence of closely spaced cracks to a single crack is useful in

the forward problem for studying the behavior of multiple cracks. The

implication for the inverse problem of damage diagnosis is that, using

the modal method, it may be impossible to distinguish between closely
spaced multiple cracks and a single crack. In special cases, the equiva-
lence exists for some configurations of multiple cracks, not necessarily

closely spaced. For the general case, we may establish a lower limit on

the spacing of cracks which is assumed, without loss of generality, to be

4 uniform.
3.3.2 Lower Limit of Spacing

Figure 9 typically illustrates the lower limit of crack spacing for

a cantilever beam when uniformly spaced multiple cracks become, as a
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whole, indistinguishable from a single crack. In Figure 9, as in subse-

quent illustratiors, each crack assumes a sensitivity number 01 of

value 0.174 which is taken to be the lower limit for failure for a beam

of slenderness ratio of 0.05 (corresponding to a relative crack depth

y= a/b of 0.6). Figure 9 is generated by the trial method. With the

number of cracks (k), individual sensitivities (81) and the first crack

location (el) given and an initial value for the spacing between the

cracks assumed, the first three characteristic values o are computed (the

forward problem). These values of 0 are called the actual values. The

first two of these are then used to solve for a single crack as described

in section 3.2 (the inverse problem with k = 1). With the e and e values
for the equivalent single crack thus known, the third characterlsttc

value for the equivalent crack is computed (the forward problem with

2> k = 1). The s values for the equivalent crack are called the equivalent

characteristic values, the first two of which are the same as the actual

values. If the difference between sB3 and 0 3 is not equal to theeq act
error allowance (i.e., ±0.001), then a new value for the crack spacing is

assumed and the whole procedure is repeated until the required agreement

is reached.

There are three cases of different crack locations in Figure 9. In
.4..the first case, the first crack is very near the built-in end, at a

normalized distance of el = 0.001 from the end. In the other two cases,

the cracks are moved toward the free end with el = 0.1 and el - 0.6,

respectively. In all the cases, (k - 1) equally spaced cracks follow the

first crack. Table 1 shows the numerical data corresponding to the

eq
in Figure 9 will shift upward (see also Figure 12). As the number of

cracks increases, they must be more closely spaced to be representable by
a single crack. The lower limit of spacing depends on where the group of

0 cracks is located. At the built-in end and at el - 0.6, more widely

spaced cracks can become indistinguishable than at el - 0.1. The lower

limit of spacing is dependent also on 01 values. For example, when

el 0.1, k = 2 and a, - 02 - 0.01 (corresponding to y - 0.2 for

'4-b/L =0.05), the smallest crack spacing for which the double-crack damage

becomes indistinguishable from a single-crack damage is e2 *0.025 under

25
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TABLE 1

Numerical Data Corresponding to e1 = 0.1 Case in Figure 9

(3) (3)
k Spacing,e 0 Seq 8eq eeq

2 .0065 7.806 7.807 .3479 .1032

3 .0033 7.799 7.800 .5219 .1032

4 .0021 7.793 7.794 .6958 .1031

5 .0015 7.789 7.790 .8698 .1029

6 .0011 7.786 7.787 1.0438 .1027

( 0(3)I _< 0.001. Figure 10 illustrates the relative changes in the

first three frequencies, Rv = 1 - Wj/Wuj.corresponding to two of the
cases in Figure 9 where wuj is the jth undamaged frequency. Each

change is based on the corresponding ordinate in Figure 9. For any given

number of cracks on a cantilever beam, the largest decrease in the funda-

mental frequency occurs when all the cracks are grouped at the built-in

end. On the other hand, for 6eq > 0.3, the greatest change in the

second frequency is observed at a location of 0.55-0.60 (Fig. 11). Such

information can be utilized to set lower limits on the possible number of

cracks on the structure as will be illustrated later.

Table 1 lists the equivalent locations and sensitivity numbers when

cracks are grouped at el = 0.1. The table indicates that, for the

equivalent single crack,

e 0.174 k , e l + e(k - 1) (53)
eq eq

where e is the uniform crack spacing. Numerical results indicate that,

in general, 9eq is approximately equal to the sum of individual sensi-

tivity numbers ei and that the equivalent crack location eeq is

closer to the cracks with larger sensitivity numbers.
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3.3.3 Guidelines for Diagnosing Multiple Cracks

In general, with two actual characteristic values known, more than

one solution exists for a single crack as was pointed out in Section
3.2. If the structure does indeed have only one crack, the crack can be
diagnosed accurately with the knowledge of a third characteristic value;

that is, the true solution can be pinpointed among the set of discrete

solutions. In other words, two different single-crack configurations can

agree in at most two characteristic values. On the other hand, a

multiple-crack configuration can have the same three characteristic

values as a single-crack configuration. Figure 12 compares the actual

0(3 values due to two cracks on a cantilever beam with 0(3 values
which would stem from the presence of either of the equivalent single

cracks. As in the previous illustration, equivalence is defined as

8()= 0act for j = 1,2. In Figure 12, the first crack is kept at a
constant location (e, - 0.1) while the location of the second crack is

varied relative to the first. In the figure, e? = 0 implies that the two

cracks coincide; that is, there is one crack at el - 0.1 of e = 0.174

+ 0174ac034' j =1,2,3) Is computed first for each e2 value

(the forward problem with k =2). The first two Bact values are then

used to solve for the equivalent single cracks (i.e., to solve for eeq
and e . (3 is then computed corresponding to each (e,e) .There areeq- eq eq-

two single-crack solutions for each [0 )} set shown by the a 3 and a 3
act eq1  3 eq2

curves in Figure 12. The second solution will be ignored since Mae2is

significantly different from 0 (3) over most of the range of e2. For

small values of e2, the actual and equivalent o(3) values agree

closely. In such a case, the location of the damage can be established

accurately (eeq), although the number and intensity of the cracks are
uncertain. (In a real situation only Is8) n o~) arefatl ad{eq eq eq'
known, the former from the measured {wjl and the latter by computa-

tion.) As the spacing between the cracks, e2, increases, 0 3 deviates

more from the actual value adeqinolgridctveof the
damage location. The only conclusion that can be drawn in this case is
that there is more than one major crack on the beam.
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Variations of the location and intensity of the equivalent crack
(3)giving rise to 8 are plotted in Figure 13. For small values of e2eq1

8eq, 2 e + e2 and eeq, = el + e2/2. The two upper curves in Figure

12 intersect a second time at e2 a 0.255. This means the following:

two cracks, one at el = 0.1, the other at a normalized distance of 0.255
-away from it with 01 =802=0.174 cause the same decrease in the first

three frequencies as a single crack located at e1 = 0.024 with e = 0.187

.14(from Fig. 13). Furthermore, there may be other combinations of multiple

cracks which may cause the same frequency changes. It is clear that

*probabilistic methods must be resorted to in diagnosis of multiple cracks

when an insufficient number of frequency measurements are available.

Nevertheless, some qualitative conclusions may be reached with the help

of Figures 9-11 which are independent of material properties. In partic-
ular, when a silution has been obtained for a single crack and a decision

* has to be made between a single crack e-1 a group of closely-spaced-less

severe cracks, one may argue that formaci,... of a single crack is more

likely for a beam undergoing bending. In other words, a small mode I

type crack is likely to propagate under bending rather than other cracks

forming nearby. On the other hand, one severe and several minor cracks
- - may exist distributed along a structure in which case the objective is to

be able to diagnose the major crack. Guidelines may be established

qualitatively based on the frequency change curves for a cantilever beam,

Figure 11, in which case we may propose that

a. If R, is considerably smaller than R2 and/or R31 then the
(major) crack(s) is at a normalized distance greater than -0.45 from

the built-in end (Fig. 11). In addition,

I. if R2 is considerably larger than R3, the crack is located

around 0.45-0.65 relative to the built-in end (Fig. l0b)(see Example 3

below);

ii. if R3 is larger than R2, the crack is at a distance greater
than -0.7 or;

iii. if R2 and R3 are comparable, then there may be one major

crack at 0.65-0.70, or two major cracks, one each in the peak regions of

the R2 and R3 curves.
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b. If R2 is significantly smaller than both R, and R3, the crack is
in the region 0.2-0.3, or there may be a (major) crack at 0.2-0.3 and
another (major) one at a distance greater than 0.8, the latter being more
likely if R3 is greater than R1.

c. If R, is significantly larger than both R2 and R3, and R2 and R3
are rather small, the crack is at 0.1-0.2.

d. If the values of R1, R2 and R3 are comparable, several possibil-

ities exist. To list a few, there may be a number of cracks distributed

over the beam (Examples 1 and 4 below); the crack may be at 0.35-0.40; or

there may be a crack at 0.0-0.3 and a few others at locations greater

than -0.5.

The term "major crack" employed in the present report stems from the

assumption that a beam fails if an individual crack reaches a relative

depth of 0.6. Whether a shallower crack may be considered major depends

on the particular application. The following table presents eL/b values

corresponding to a range of relative crack depths y. v is taken to be

0.3. Thus, if y, 0.3 is considered serious for a beam of b/L - 0.05,

then a crack with a greater than 0.024 would signal a major crack.

Y eL/b

.1 .051

.2 .204

.3 .484

.4 .966

.5 1.825

.6 3.485

In the present study, only the first three natural frequencies are

assumed measurable. The peak locations of R2 and R3 curves in Figure 11

are weak functions of a and shift to the right as a incre,'----. For

example, as a is increased from 0.01 to 0.50 (effective value for a few

closely spaced cracks), the peak of the R2 curve shifts from the location

0.530 to 0.563, while the second peak of the R3 curve shifts from 0.710

to 0.760. (See also [1], pp. 29-31.)
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Similar guidelines for different structures can be established based
on minimum and maximum frequency changes although the procedure may
become tedious for more complicated structures. The following examples

illustrate some of the applications. In all the examples, a slenderness

ratio of b/L = 0.05 is assumed.

Example 1. To illustrate the uncertainties involved in damage diag-

nosis when the three Rivalues are comparable in value, the following

relative frequency changes are assumed to have been computed from the
measured frequencies of a cantilever beam: R, = .0579, R2 = .0586,
R3 = .0591. It is to be determined whether the damage mainly consists of
one major crack.

The (actual) characteristic values are computed from

a(j) (j)1-R12(4
* ~~~act = u~~1 J(4

V (U)
where {Bou I are the undamaged characteristic values. The first three of
these for a cantilever are 1.8751, 4.6941, and 7.8548. From Equation

(54) in particular, s()= 7.6192. The first two actual characteristicact
characteristic values yield, according to the procedure given in Sec-

tion 3.2, one solution for a single crack located at e eq = .372 with

eeq = .128 (corresponding to a relative crack depth of y = .55). These

equivalent values are then used in the forward problem with k = 1
(Equations 31, 32, 35, 38) to determine the third characteristic value

due to the equivalent crack. The computation thus yields s 7.614.

Then, 
e

(3) (3)
8act eq -. 01

If we assume, for the sake of argument, that 0 e3 is much more accurate
(3)' (3)
Batand if the accuracy in 0 act is not better than ±.0018, the equiva-

lent single crack solution may be accepted as the true damage diagnosis.

On the other hand, the given Rj data were actually generated in a
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forward problem with ten cracks of equal intensity (e was taken to be .01
[i.e., -Y = .2] for all the cracks) located such that el = .001, e~ .094
for i = 2,3,.,,,10. Thus, in this case, even though the actual and
equivalent 00 values match closely, a firm diagnosis cannot be

reached.

* Example 2. The frequency changes and the third characteristic value

have been computed from the measured frequencies similar to the first

example: R, = .379, R2 = .210, R3 = .144, at=7.2672. What conclu-

sions on the damage configuration can be reached from these?

The first two characteristic values, computed as in the first exam-

ple, yield two solutions for an equivalent single crack. One of the
(3) (3)solutions yields a a value which is much different from 0 and iseq act

therefore disregarded. The solution which gives 0 3 = 7.2678 is
e eq = .0077 and 9 eq .400. The largest value of R, for any number of

eeq = .400. The largest value of R, for any number of cracks occurs
when all the cracks are grouped at the built-in end (Fig. 11). From

Fig. 10a, when there are two closely-spaced cracks at the built-in end

with ei = 92= .174, R, is equal to 0.354. For three cracks in the same

region, R, = .432. The measured value of R, given above is .379. Hence,
it can be concluded that there are at least three cracks on the beam

(based on the assumption that a for each crack is not greater than the

limit of failure, 0.174, for b/L = .05). In principle, a large number of

minor cracks (i.e., cracks with e less than 0.01 in this case) can cause

* the same reduction in the first three frequencies as given in the problem

statement. However, it may be argued that the likelihood of having

several major cracks distributed in the peak regions of the Rjcurves
is greater.

Example 3. This example illustrates the effect of minor cracks on

Rvalues when minor cracks are present in addition to a major crack on

a cantilever beam. The locations and intensities of the cracks are
Uj)

known. The characteristic values 0 are determined from Equation (38)
in Section 3.1 (the forward problem). The relative frequency changes are

then determined from the characteristic values, namely,
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18(j) 2

a. First the analysis will start with one crack (Fig. 14a), i.e.,

k = 1, at e = .54 (in the peak region of the R2 curve, Figure 11) with

e = .174 (y = .6). The relative frequency changes are then computed as

R, = .029, R2 = .137, R3 = .014.

b. Now, in addition to the crack in part (a), there are five more

cracks of intensity 0 = .0026 (y = .1) each, distributed on the cantile-

ver such that el = ez = e3 = es = .1, e4 = .24, and e6 = .09 (Fig. 14b).

(1) =140 (2)The actual characteristic values are computed as (  1.840, a

4.351, and (3 ) = 7.768 from which R, = .037, R2  .141, R3 = .022.

If these values of Rj were computed from actual measured frequencies

and the damage were to be diagnosed (the inverse problew.,), then {(J)}

would be computed from Equation (54) in Example 1. When this is the

case, B(1) and s(2) are used to find a solution for a single crack

which is (e ee) = (.51, .183). This single crack would produceeq'1 eq

(3) = 7.845 or R3eq .0024.eqorRe

.54.

(a)

.2 1-09

' ' '-".os

' I I I I

(b)

Figure 14. Cartilever with One and Six Cracks

(distances are normalized based on
the beam dimension in the corresponding
di.ection).
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c. The same case as in (b) except e are changed to .01 (y - .2)

with the major crack remaining the same, i.e., 4 -- .174. Hence, the
depths of the minor cracks are doubled. The values of e and ei are

used, as in the previous cases, in the forward problem to compute

R1 - .058, R2 = .151, R3 = .043. R1 and R2 are in turn used in the
inverse problem of damage diagnosis with k - 1 to obtain (eeq, eq)

(3) =.04
= (.47, .224), B ( 7.830, R3  = 0064.eq eq

The above cases indicate that the value of R2 did not change signif-

icantly when minor cracks were added to the beam. If this were an actual

damage diagnosis problem, in which case only {O(J)} and {RjI would be

known from the measured data, then a decision would have to be made about

the computed (eeq, eeq). In case (b), R3 - .022 whereas R3eq = .0024.

In case (c), R3 = .043, but R3eq - .0064. Hence, based only on compari-

son of R3eq with the actual values of R3, the solutions for (eeq 8 eq)
would be rejected. Nevertheless, the equivalent damage parameters in

both cases closely identify the major crack located at the distance of

.54 from the built-in end with e = .174. When there is no minor crack on

the beam, as in case (a), (eeq e eq) would be computed as (.54, .174).

The effect of the minor cracks on (eeq, eq ) is thus seen to be small.

Hence, it is concluded that, when the given R. values exhibit a pattern

such as in this example, the discrepancy in R3 and R3eq or in (3a)ct

(3)t
and (3)can be ignored when the interest is in diagnosing the majoreq
crack.

Example 4. This example illustrates different crack configurations

which cause the same decreases in the first three frequencies. In each

case, the crack locations and intensities are given from which the

characteristiP values and the relative frequency changes are computed

(the forward problem).
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The three crack configurations are

a. k = 3, el = 0.013, ez = 0.404, e3 = 0.408

61 = 62 = 63 = 0.05 (y = 0.405);

b. k = 4, el = 0.001, e2 = 0.15, e3 = 0.23, e4 = 0.25

61 = 02 = 64 = 0.01 (y = 0.2), 63 = 0.174 (y 0.6);

c. k = 8, el = 0.001, e2 = 0.06, e3 = 0.14, e4 = 0.20,

es= e6 = e7 =0.10, es = 0.19

61 = 0.021 (y =0.28) for all 8 cracks.

All yield the same changes in the first three natural frequencies,

namely,

R= 0.099, R2 = 0.108, R3 = 0.089.

There may likely be other combinations of cracks which produce the same

results. When the first two characteristic values are used to solve for

a single crack (the inverse problem of damage diagnosis), e eq = 0.3849

8eq = 0.249, R3eq = 0.081 are obtained. If the above Rvalues had been

the actual measured values for a damaged cantilever and If the true

situation had been as in (b), then the major crack (63 =.174), which is

at a distance of 0.381 from the built-in end, would have been diagnosed

accurately. However, uncertainties always exist when the three Rj

values are comparable to each other as illustrated in this example.

Example 5. This example is intended to show that, when multiple

cracks exist on a beam, a crack which is located in the peak region of an

R.i curve affects the corresponding frequency, wi, the most.

a. Given k = 1, el = 0.001, 61 - 0.174. The frequency changes are

computed as (the forward problem)

= 0.34, 2 = 0.162, R3 = 0.125.

4 b. A second crack is added to case (a) such that e2 = 0.546 (i.e.,

near the peak region of the R2 curve, Figure 11) and 02 =0.174. Then

R= 0.246, R2 =0.272, R3 = 0.162.
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c. A third crack is added to case (b) such that e3 = 0.185 (i.e.,

near a peak region of the R3 curve) and e3 = 0.174 [parameter values in

cases (a-b) are preserved]. Then

R= 0.247 R2 = 0.301, R3 = 0.250.

If 03 = 0.01 instead of 0.174, then

R, = 0.246, R2 = 0.273, R3 = 0.167.

In case (b), the greatest dcrease relative to case (a) occurred in the

second frequency, whereas in case (c) it was the third frequency that

suffered the largest decrease relative to case (b) although this decrease

was insignificant for 03 = 0.01. The example illustrates the effect of

crack location and intensity on the frequencies and confirms the useful-

ness of curves such as Figure 11 to diagnosis of damage as outlined in

the guidelines presented earlier.

Example 6. In all the above examples, B( ) and B(2) have been used in

the inverse problem of diagnosing the major crack as described in Section

3.2. It has been found numerically that using the pair (s(i) B 3 '  (or

(08(2) 103) yields better results in some cases as this example

illustrates.

a. Given k = 4, eI = 0.001, e2 = e3 = 0.15, e4 = 0.33,

1= 2= = 0.01, 04 = 0.174

which result in

R, = 0.049, R2 = 0.137, R3 = 0.119

b. If it is now assumed that the above Rj values have been

obtained from the measured frequencies and if {8(j)l are computed from

Equation (54), then BM and B(2 ) can be used in the inverse problem to

solve for the single crack

eeq = 0.475, e = 0.193, R3eq = 0.004.
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(2) (3)If, instead, s and B 3 , which correspond to the largest two of the

three Rj values, are used, the diagnosis yields two possible solutions,

namely,

eeq = 0.372, eeq = 0.422, Rle q = 0.161

and

eeq 0.647, eeq 0.217, Rle q  0.015eq eq

The second one of the last two solutions is more likely since Rleq= 0.015

is closer to the measured value of Rlact = 0.049. Indeed, the location

diagnosed, eeq = 0.647, is close to the location of the major crack which

is at the distance of 0.631 from the built-in end.

Other examples can be given wherein a certain pair of S(J) values

"'-- yields better diagnosis. However, it is not clear at this point which

. pair to choose in each case.

It should be noted that the sensitivity number 8 is a measure of how

sensitive the natural frequencies are to given crack depth and location

as a function of the slenderness ratio. Decrease in natural frequencies

is greater for larger values of 8. Between two cracked beams with the

same crack location and relative crack depth, e for the more slender one
will be smaller giving rise to smaller Rj values. For example, for

y = 0.6 (and v = 0.3), 8 = 0.0697 when b/L = 0.02 and 8 = 0.0174 when

b/L = 0.005. Thus, in practice it is relatively harder to diagnose

*damage in slender beams.

I-4
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4.0 General Two-Dimensional Frame Structure

This chapter expounds a generic model of a two-dimensional multi-
storied frame (Fig. 15) with n stories and m spans (thus m + 1 anchors).
A formalized scheme is developed for obtaining the modal frequencies of
such a structure with or without cracks. In the T-clrcuit analogy, the
characteristic equation for the structure is developed through the mesh

current (moment) equations. Hence, the unknowns are the moments at the
frame joints and at the cracks. There are (p - 1) unknown moments at a
frame node where p beams join together. Because the moment is continuous

* across a crack, there is one unknown moment for each crack. It follows
that the order of the resulting linear system, which is equal to the

* number of unknowns, is [n(3m + 1) + kJ for a frame with k cracks. 'On the
other hand, in the n-circuit analogy, node voltage (slope) equations lead
to the characteristic equation. Slope is continuous at a frame joint;
therefore, there is one unknown slope for each frame joint regardless of

the number of beams connected there. However, there are two unknown

slopes at each crack location, one on each side of the crack. In other
words, slope is discontinuous across a crack. The structure is assumed

rigidly fixed at the ground level; hence, the slopes are zero at the
anchors. The order of the system is thus En(m +- 1) + 2k] with w cir-

cuits. The n-circuit analogy is therefore preferred over the T-circult
analogy, since the order of the system for k <2mn is smaller in the

former.

The procedure to obtain the characteristic equation of the frame
structure can be outlined as follows:

1. a! circuits simulating individual columns and girders joining at
right angles are interconnected such that the boundary conditions (Ref.[I 1, p. 40) at the analog-frame joints are observed. (It will be shown
that a network diagram need not actually be drawn.)

- 2. For each crack present on any element, one more nr circuit

(hence, two more unknown slopes-voltages) and one crack resistance (Sec-
tion 2.3) are added to the network. A girder or a column with p cracks

is thus simulated with (p + 1) 11 circuits connected in cascade via the
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Figure 15. General n-story rn-span Framte Structure.
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crack resistances. The first and the (p + 1)th circuits are then con-

nected with the rest of the network according to Step 1.

3. Kirchhoff's current law is written in terms of the node voltages

which correspond to the angles of rotation at the frame joints and at the

cracks.

4. Under free vibration, the coefficient matrix obtained in Step 3

must be singular. If the damage parameters (i.e., location and severity)

for each crack are known, the characteristic values of the structure,

fa1, can be determined from the zero determinant of the coefficient

matrix (the forward problem). If the characteristic values are known and

a diagnosis of the damage is required (the inverse problem), the method

in Secton 3.2 is used to find a solution for a single crack, similar to

the examples in the previous chapter.

The approach taken here results in a formal scheme which can be

applied to frame structures without referring to an actual network dia-

gram. Reference will be made to Figure 5. The word "wall" will denote

the union of all the columns on the same vertical line. Each node and

each beam element is identified by a number. Numbers corresponding to

the nodes are encircled in the figure. The numbering order for the beam

elements begins at the left lowest column, proceeds up through the

columns on the first wall, returns back to the second anchor, proceeds up

vertically, and continues in that order. Once the columns are finished,

girders on each floor are numbered progressively from left to right

starting with the first floor and continuing on with the upper floors.

Quantities related to a beam element such as G, P, Q, etc. are sub-

scripted by the number of the element. Each node is numbered by the

column under the node. If there are t cracks on a column (girder), the

original number of the beam element refers to the uppermost (rightmost)

segment of the column (girder) which is now represented by t + 1 beam

segments. The other segments are numbered following the largest number

in the scheme. Due to discontinuity of slope at a crack, two new nodes

are created on the two sides of each crack.
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4.1 Analog Circuit Equations and Boundary Conditions

Nodal Equations:

Figure 16a shows a typical node r at the intersection of column

elements r, s and girder elements p, q. In reference to Figures 5 and

16a, the sum of the branch currents entering the node r are set equal to

zero. Namely,

I(y yrGpo + (y- Yr) qo + (Yk Yr)Gro + (Y- yr)Gso (56)

-Yr(Gp + Gq + Gr + Gs) + Ip2 - Iq1 + Ir2 - Is, = 0

where (y -yr) is the analog voltage difference between the nodes i and

r and Gpo is the conductance which connects these two nodes. The

current sources appearing in Equation 56 are dependent on the transverse

deflections of the two ends of the beam elements to which they corre-

spond. Under small deformation theory, vertical deflection of the nodes

shown in Figure 15 is, by second order approximation, equal to zero.

Thus, in Figure 16a yp2 = Yql = O, Yp2 and Yq, denoting the deflections

of the right end of the pth girder and left end of the qth girder,
respectively. If, in addition, the nodes i and j do not bound cracks,

then Ypl = Yq2 = O. Consequently, Ip1 = Ip -=q1 = lq2 = 0 from

Equation (23). On the other hand, Ir2' for instance, is not zero since,

in general, Yrl * 0 and Yr2 = YsI * 0 (i.e., side sway is allowed).

Upon substitution of Equation (22) into (56),

-Y(npQp + nqiQq + nriQr + nsQ s ) - Y;np Wp - ynqjWq - Y4nrWr

-I +1

where np (EIS/L)p/(EIS/L)0 and (EIS/Lo) is the characteristic value

chosen for the frame.
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Figure 16. Typical Nodes on the Frame.
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In the formulation of crack nodes, Figure 16b shows two nodes, r and

r across a crack on a beam element. Kirchhoff's current law is written

for the node r:

(y;n - y')G + (;y' -y')(-c) - y'G + Ir= 0 (58)
q rro rrr 2

where yr' is the rotation of the node r' and the conductance -c repre-

sents the crack. The nodal equation for the node r' is of a similar

form. Equation (58) is valid whether the crack is on a girder or a

column. Following the same steps which led to Equation (57) we may

obtain

-,Q ri r + (Ao_) = 0 (59)-yr(nriQr - - Yr( ) - yqnr1Wr +IBol r2 =(9

Assemblage of the Nodal Equations:

From the small deformation theory, points on girders on the same

floor level will have the same horizontal displacement. Namely,

Yij = Y n+i,j = Y2n+i,j = " -Ymn+ij i = 1,...,n , j = 1,2
(60)

Also, Yi2 = yi+,1' i = 1,...,n-1. On the other hand, deflection conti-

nuity across a crack implies that deflections of the nodes r and r' in

Figure 16b are equal. Thus, there are (n + k) unknown deflections

associated with the frame, k denoting the total number of cracks on the

frame. Designating by yi(Y y 2  i = ,...,n) the horizontal displace-

ment of the ith floor, we obtain an (n + k) vector of displacements and

an [n(m + 1) + 2k] -vector of rotations as

Y- {yl Y2 ... Yn Yn(2m+1)+1 " n(2m+l)+k T

Y' =y 1 ... Yn(m+l) Yn(2m+l)+l n(2m+l)+l ""Y*n(2m+l)+k T  (61)

where yn(2m+l)+i designates the transverse deflection at the ith crack,

and y )+i and Y' designate the rotations immediately to then(2m+1)+ n(2m+l)+i

46 41
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left of (below) and to the right of (above) the ith crack which is on a

girder (column). The unknown deflections can be related to the rotations

via the kinetic equations, defining the sideway motion of the floors, and

the shear continuity conditions at the cracks. Cross shears at the

column ends are the axial driving forces for the floors [1, p. 42). The

axial acceleration of a floor, which is composed of all the girders on

the same level, is the same as the transverse acceleration of the column

ends at the nodes where the columns join the floor. Thus for the ith

floor (Figure (17)

m ~p+M-1 q+k.-1 jJ'~iEZ[Vjn+i,2 - V jn+i+1,1j 1 pjL + j PjL~ (62)j=o =p J=q

where p = (m + 1)n + (i - 1)m + 1 in accordance with the numbering order

described earlier and ki is the total number of cracks on the ith

floor. There is one such equation for each floor. The term in the

braces on the right-hand side of Equation (62) is the total mass of the

ith floor. Equation (62), upon substitution of the last two of Equations

(19) for shears, will relate deflections to rotations. Figure 18b shows

the diagram of a frame with m = 1, n = 2, k = 2. There are eight nodes,

eight beam elements (hence eight interconnected i circuits) and four

unknown deflections. The first floor has one crack on it. The kinetic

equation for the first floor with 0e = ps, has the form

V12 + V32 - V22 - V71 2 y10 s(L5 + La) (63)

where, for instance,

V32 = 3 Q3 - P3YI,3/L3) (64)

V71= QY 3 + W7Y; + (P7YI  P;Y7)B/L7 ]

from Equation (19) with Y31 = Y31 = 0, Y= = Y71,
I I I I S

Y3 Y32 = Y;i1 Y72 = Y7, Y72 = Y;. Substituting shear expressions,

Equations (64), and the similar equations for V12 and V21 , into Equation

(63) and rearranging, we obtain
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Figure 17. Cross Shears in the Columns Adjoining the ith Floor.
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Figure 18. Two-story, Single Span Frame (a) with No Crack,
(b) with Two Cracks.
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(f.){j[nI 3 PI + n2 3P2 + n33 P3 + n7 3 P7 + n5 3 (0 5 + 08)]Y1

n23P2y2 - n73P;y 7} = (n 2Qj - n22Q2)y - n2 W2y;
I I .(n32Q3 - n2Q7 - n72Wy 7  (65)

where

nij= (EI) i(Bi/Li)j/[(EI)o(Bo/Lo) "] . (66)

The kinetic equation for the second floor can be developed similarly.

Application of shear continuity at a crack will now be demonstrated for
the crack on the first floor (Fig. 18b). Hence V82 = V51, or from the

last two of Equations (19)

e(WsY1 ' + Q8Y8 ' - Pgyo8 s/Le) = ..(Q'YS + W5y3 + Psyss/Ls) (67)

since Ye, = Y52 = O.• The following expression is obtained by rearranging

Equation (67) and noting that hs = he and es / L5 = 08/Le:

(Ps + Ps)y 8 = WBY 1 - W;Y3 + QsYs - Q5Y8  (68)

For the general frame structure, there are n kinetic equations of

the form of Equation (65) and k shear-continutity equations of the form

of Equation (68). These (n+k) equations can be arranged in a matrix form

to solve for the deflections in terms of the rotations, namely,

Y = (Y) Z (69)

On the other hand, the nodal equations (57) and (59) can be arranged in

the form

(L )o H - jy6 = 0 (70)

49



where I is the vector of current sources and is related to the deflec-

tions via Equations (23); that is,

EI 2 2y(71)

After Equation (69) is substituted into Equation (71), then Equation (71)

into Equation (70), and it is noted that Hlt 2 = xT, the slope equation

results:

(XTZ'1X - U)y' = 0 . (72)

This is the general form of the result for any planar frame with any

number of cracks on it. The coefficient matrix in (72) is symmetric.

The individual matrices, in general, have the forms

X(1) .. ..IX (e+) j  Fc  0 O n

" E- c JE t _ 0 - kc m (73)
_c __ _ F~l c - l c

SL Eg I '"I 9,m+l J - 1 H Hg k kg

n(m+1) 2kc  2k n kc  k

U= L T* B 1 0 / = T -

_ ATgI0 IBg J L I 0 log_

with y and y' arranged as in Equation (61)

='u Y y T (75)
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where the subscripts c and g refer to cracks on the columns and on the

girders, respectively, with k c and k being the total number of cracks on

the columns and on the girders (k - kc + k ). It should be noted that

X(i) , Uo , and Zo for the case of no crack are modified when cracks are

introduced on the frame. The matrices U and Z are symmetric. A formal

procedure will now be described to establish the above matrices without

the need to draw the actual analog circuit.

4.2 Procedure to Establish the Matrices

In the following, for simplicity of explanation, properties of the

beam elements are assumed uniform throughout the frame,-that is, nij = 1

for all i,j, except for the lengths. At the end, corrections for the

general case are mentioned.

1. To establish the U matrix:

U is composed of the coefficients of the rotations yi' in equa-

tions such as (57) and (59). The ith row in the matrix stems from

Kirchhoff's current law written for the ith node, the first n(m+1) rows

being for the nodes on the frame 'joints and the next 2k rows for the

nodes at the cracks. Hence,

a. the diagonal entry uii will be the sum of the Q values,

Equation (20), of the beam elements adjoining at the node for which

Kirchhoff's current law is being written. If this node is at a crack,

then uii is given by the Q value of the element ending at this node

minus the M value for the corresponding crack, where M = 1/Be. Diagonal

entries of B and B will thus be of the form ( - Mr) And,

b. the off-diagonal entry uj will be Wk, Equation (20), if the

nodes corresponding to the columns i and j of the matrix are linked

directly by the kth beam element. If these two nodes are linked by a

crack, i.e., they are the nodes on the two sides of a crack, then uij

is given by the M value of the crack. Otherwise uij = 0. Due to

symmetry, uij = uji. The ith row of U0 in Equation (74) is unchanged

relative to U0 of the no-crack (k=O) case if the ith node is not adjacent

to a cracked element.
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2. To establish the Z matrix:

The matrices Z and X stem from the kinetic equations and shear condi-

tions. The first n rows in them represent the kinetic equations govern-

ing side sway of the n floors. The last k rows correspond to shear

continuity conditions at the cracks. Z consists of the coefficients of

deflections yi and its entries can be generated as follows:

a. The diagonal entry zii for i=1,2,...n will be the sum of

the Sk values of all the girder elements on the ith floor plus the sum

of the P values, Equation (20), of all the columns adjoining at the ith

floor. If a column adjacent to the ith floor is cracked, then only the P

value of the column segment nearest to that floor will be included. sk

can be expressed in terms of the characteristic value so as Bk = ek OO.

If the frame is homogeneous in properties, then ek = Lk/Lo. Diagonal

entries zii for the last k rows (i.e., diagonal entries of the D matri-

ces) will be the sums of the P values of the two beam segments on the two

sides of the corresponding crack.

b. The off-diagonal entry z i1 t+1 of Z0 will be the negative of

the sum of the P' values, Equation (20), of all uncracked columns joining

ith and (i+1)th floors. zi'i+1 = 0 if all the columns between those

floors are cracked. z j = 0 for n > j >. i+2 and zij = zjt. Z0 is,

hence, a tridiagonal symmetric matrix. If any one of the columns adja-

cent to the ith floor is cracked, then zij for 1 < i < n, n < j < n + kc

(i.e., entries of C c), will be zero except for that (those) j value(s)

which correspond(s) to the deflection(s) at the crack(s) nearest to the

ith floor, in which case zij is equal to the negative of the P' value

for the column segment which links the ith floor to that crack. If none

of the columns adjacent to ith floor is cracked, then ith row of Cc is

zero and the ith row of Z0 is unchanged relative to Z0 of the no-crack

(k=0) case.

z for n < i < + kc (entries of D ) will be zero if there is no

other crack between the (l-n)th column crack and the floor level above

.5
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this crack. Otherwise, zii+ will be equal to the negative of the P'

value for the column segment which links the (i-n)th and the (i-n+l)st

cracks.

zi'i+ 1 for n+kc < i < n + k (entries of D ) will be zero if there

is no other crack between (i-n-kc)th girder crack and the wall to the
right of this crack. Otherwise zi,i+ 1 will be equal to the negative

of the P' value for the girder segment which links the (i-n-kc)th crack

and the crack on its right.

Hence, Dc and D are diagonal if at most one crack exists on each

beam element. If more than one crack exists on any column or girder,

then Dc and/or Dg are accordingly tridiagonal symmetric matrices.

3. To establish the X matrix:

X consists of the coefficients of rotations yi' in equations such as

(65) and (68). A square submatrix X(k) in Equation (73) corresponds to

rotations of the frame joints on the kth wall (Fig. 15).

a. The diagonal entry (k) which stems from the kinetic equa-xii ,l

tion for the ith floor, will be given by the Q' value, Equation (20), of

the column (column segment) under the frame-joint node n(k-1)+i minus the

Q value of the column (column segment) above the same node. If there is

no cracked column on the kth wall, then x(k)= I
fii Qn(k-1)+i Qn(k-1)+i+l

for i . and x k n

b. The off-diagonal entry x (k )  (that is, the,'i+I = Wn(k-1)+i+l ta s h

negative of the W' value, Equation (20), for the column above node

n(k-1)+i) for i=l,...n-1 if the column of the kth wall between the ith

and (i+l)th floors (i.e., the column above node n(k-1)+i) has no crack on

it. Otherwise x k) = 0, and that entry on the ith row of F which
",i+1I

corresponds to the rotation of the crack node nearest to and above the

node n(k-1)+i will be equal to the negative of the W' value of the column

segment linking the node n(k-1)+i and the said crack node. x(k ) = 0 forlj

j > i+2 and x(k) = (k) for i * j. (Entries of each Xk are numbered

independently of the other submatrices.) X(k) is thus diagonal if each

column of the kth wall has at least one crack. Otherwise it is
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tridiagonal. X(k) is unchanged relative to X of the no-crack (k=O)

case if there is no crack on the kth wall.

If the column below node n(k-l)+i is cracked, then that entry on the

ith row of F which corresponds to the rotation of the crack node nearest

to and below the node n(k-1)+i will be equal to the W' value of the

column segment linking the two nodes. Except for this and the above

mentioned cases, entries of F are zero.

c. The E matrices in Equation (73) couple the crack nodes with the

frame-joint nodes. Rows n+1 through n+k of X (i.e., E and H matrices)

are filled in as follows: The entry on the matrix column which corre-

sponds to rotation of the node on the left (or lower) side of the crack,

at which the shear continuity condition is being written, is equal to the

Q' value of the girder (or column) segment which links this node to the

one on its left (or below it). The entry corresponding to the node on

the right (or upper) side of the crack is equal to minus the Q' value of

the segment linking this node to the node on its right (or above it).

These two entries are within the submatrix H (o H ). The entry, corre-

sponding to the node on the left of (or below) the left (or lower)

crack-node, is equal to the W' value of the segment linking these two

nodes. Finally, the entry corresponding to the node on the right of (or

above) the right-side (or upper) crack-node is equal to the negative of

the W' value of the segment linking the two nodes. These two entries can

be within the submatrices E or H depending on whether there are one or

more cracks on a girder (column). Ec k - 0 if there is no crack on the

kth wall; Eg,k 0 if there is no crack on any of the girders adjacent to

the kth wall.

4. Corrections for the general case:

If beam properties are not uniform throughout the frame (each column

or girder still has uniform properties within itself), then the following

corrections are necessary:

a. Multiply each term in the U matrix, except the terms of the

form i/Bet, by the corresponding n, value, that is, Q and W by npl.
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b. Multiply each term in the first n rows of the X matrix by

the corresponding n2 value, that is, Qp and W' by

c. Multiply each term in the first n rows of the Z matrix by

the corresponding n3 value, that is, P and P by n and r by nr 3 .

d. Multiply the ith row of Z, n+1 < i < n+k, by (0z/Lt)/(BoILO)

where z is the number of the element on which the crack for which the ith

row represents the shear continuity condition is located.

The above procedure will now be illustrated with an example.

Example 1. The illustrated frame is depicted in Figure 18.

a. Frame without cracks (Fig. 18a) with different beam properties.

YJy 2  Y3Y4

nl 1 Ql+n 2 1Q2+ns 1 Q5  n2 1W2  n51 W5  0.--

n21W2 n2 1Q2 +nr1 Q6  0 n61 W6
Urn .. .

nslWS 0 n31Q3+nlQ4+nslQs n 1 W4,

0 n61W6  n4 1W4 n4 lQ4+n61 Q6

(76)

Yi Y2"

n13Pj+n 23P2+n33P3+n 3 P+nS38S -n23P2 '-n4 3P' "
Z (77) "

II I '
-n3P n43P4  n23P2+n43P4+n63B 6-

Y, Y2 Y3  Y4

I II I '

n12Q1-n 22Q2  -n22W2  n3 2 Q3 -n 2Q4  -n4 2W4 ,

I I I I L

X " n2 2W2  n2 2Q2  n42W4 n42Q4 (78)
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where, for convenience, the rotations and the deflections at the nodes

are written above the corresponding columns of the matrices. The

det (XTZ X-U) then yields the modal frequencies of the frame without

crack.

b. Frame with two cracks (Fig. 18b). The frame is now assumed

uniform. Hence, n1jol and e as /So=L /Lo.

*ISIS -m I -, .:-',

Y, Y2 Y3 Y4  Y7 Y7 Y"

Qz+ 2+ e W2 0 O 0 0 we 0

W2 Q2+Q6 0 W6  0 0 0 0 2

0 0 Q3+Q5+Q7  0 W7 0 0 W5

0 o 6  0 Q4+Q6 1 0 W4  0 0

0 I0 Q-M M4 0 0

0 0 0 W4 M4  Q-M4 0 0

We  0 0 0 I 0 0 QO-M s  Ms

0 0 0 0 0 Ms  Qs-Ms

(79) -

It may be noted that the first four elements in the second row of U are

the same as those in the second row in Equation (76) (except for the

factors np, This row is unchanged since node 2 is not linked to any ; * .

crack node. If the beams had different properties, then each term in U

would be multiplied by the corresponding n, value except the terms

Mt = /sel. In the ML terms, the sensitivity numbers, 9,, are sub-

scripted by the original number of the column or girder on which the .

corresponding cracks are located. Hence, 64, for instance, refers to the

crack located on the column numbered 4 in the uncracked frame (Fig. 18). '-

It is also noted that Q4, W4, P4, etc. for the cracked frame have differ- "

ent values from the ones in the no-crack case. The Z and X matrices of

the cracked frame are subsequently conjugated as:
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.1

Yi Y2 Y7 Ys

P1+P2+P3+P7+5+8 I -P 0- IN

-P2 P2+P 4+0 6  I -p4 0 (0Z =I(80) -%

-P7 -P4  P4+P7  0

0 0 0 P5+Ps I
8j

, a , , , ., , -, g

Yl Y2 Y3 Y4 Y7 Y7 YB YB

- , , I , , ,

Q1 -Q 2  -W2  Q3 Q; 0 -W7  0O 0

"0 0 0 0
T- (81)

0 0 W7 _; W4 Q7 _-Q4 0 0 I

-I-II , - -

- e -W 0 0 0I

where X in Equation (78) and Equation (81) are basically the same

since there is no crack on the first wall. The terms -W4' and W4' in

X(  in Equation (78) are replaced by zeros in Equation (81), since nodes

3 and 4 are no longer linked directly. As the column under the node 4 is

cracked, the node 4 is now linked to the node 7' by the column segment -

4. Therefore, W4 appears on the second row and second column (which

corresponds to y7) of Fc . The third row of X reflects the continuity of

shear at the column crack in Figure 18b. The lower crack-node 7 is

linked to the node 3 by the column segment 7 and the upper crack-node 7'

is linked to the node 4 by the segment 4. Q' and W' values are accord-

ingly placed on the third row. The construction of the matrices for the

cracked frame is now complete.

Figure 19 illustrates the relative changes in the first three natu-

ral frequencies of a two-s-tory single-span frame with a single crack of

.174. The frame has uniform properties (i.e., ni, =1 for all i,j) U
and all six of the beam elements are of equal length, (i.e., si are the

same for all the six elements). Due to symmetry, a crack on element 3 or 571-
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will yield the same R curves as a similar crack on element 1 or 2,I

respectively (Fig. 18a). The first three characteristic values for suchV

a frame with no crack are OM = 1.2240, O = 2.2177, 0 (3= 3.2885.

Similar to the guidelines established previously for damage diagnosis on

a cantilever beam, the following conclusions can be deduced from Figure

19 for the specific frame involved. (Due to symmetry, only the left half

of the frame need be considered).
e.

a. In cases when R, is relatively large and R2 and R3 have near- r
zero values, the (major) crack is either on the column element 1 at a

distance of 0.35-0.40 from the ground or on the girddr element 5 at a
distance of 0.0-0.15 from the corner, or there are two major cracks, one
each at the given locations.

b. In cases when R2 is relatively large and R, and R3 are near

zero, the crack is on the column element 2 at 0.15-0.20 distance from
the lower joint.

c. For the case when R3 is relatively large and R, and R3 are
small, the crack is on element 2 at e7 =0.45-0.60, or near the mid-point

of either of the girders, or there may be a major crack at each of these

locations.

d. When R, is very small and both R2 and R3 are relatively large

and have comparable values (say, different by no more than 0.01 at the
range of values in Figure 19), the crack(s) is (are) on element 1 at

e7 = 0.55-0.65 and/or an element 2 at e7 = 0.25-0.40.

e. In the case when R2 is very small and R, and R3 are both large

and comparable in value, the crack(s) may be on element 1 at e7 = 0.40-
0.50 and/or on element 5 at e7 ' 0.25-0.35. However, there are other

possibilities, an example of which is the presence of three major cracks,

one each on element 1 at e7 - 0.4-0.5, on element 2 at e7 =0.5-0.6, and

on element 5 at e7 =0.0-0.20.

59



f. If all Rjare comparable in value, many possibilities exist.
The above guidelines (for equal-legged frame) are reasonable estimates.
They illustrate the use of relative Rj values when a numerical solution
cannot be found for a single crack. They also serve the direction of
probabilistic measure to be developed later.

Example 2.

The first three characteristic values ou for an undamaged two-

story single-span uniform frame of equal-length elements are 1.2240,

2.2177, and 3.2885. The following relative frequency changes have beenj

computed from the measured frequencies of a damaged frame of such charac-

teristics: Ry= 0.011, R2 = 0.025, R3 = 0.005. The damage will be

estimated based on these relative changes.

The characteristic values for the damaged frame are computed from

Equation (54). The first two of these values are used in the inverse

problem with k=1 (section 3.2); that is, a solution for a single (major)

crack is sought. Four possible damage pairs are thus computed; namely,

(e7, a,) = (0.811, 0.278)

(e7, 86) = (0.094, 0.191)

and due to symmetry

(e7, 83) - (0.811, 0.278)
(e7, 06) = (0.906, 0.191)

where e7 - L7/L indicates relative crack location measured 7-om the lower I k
end of each column or the left-hand end of each girder. The subscripts

"eq" for equivalent which were used in Chapter 3 have been dropped here.A

The subscript on 8 indicates the structure element on which the crack is

located. The major crack is thus either on one of the first story

columns (i.e., on column 1 or 3) or on the second floor girder (i.e.,

beam number 6) (Fig. 18a). To decide where the actual crack is located,

(e7, el) and (e7, 86) are each used separately in the forward problem toN
compute the relative reduction in the third natural frequency which would
be caused by each crack alone. The computed values are 0.017 and 0.002,

60



respectively. The second value is closer to the actual measured R3 value :
of 0.005. Thus, it may be concluded that the crack is on the second
floor girder, i.e., on element 6. The fact that the actual R3 value is
greater than the computed value may be due to a minor crack on the frame,
for example, near the middle of girder 5 or 6 (Fig. 19). It must be

stressed, however, that one major crack is assumed to exist in the above

computations. The same Rjvalues may be produced by a combination of

minor cracks or, for instance, by two major cracks, one on column 1 at

0.40-0.50, the other on girder 6 at 0.05-0.10 (Fig. 19). In the latter

case, the crack on column 1 would, by itself, produce almost no change in

the second natural frequency while rendering small changes (<0.003) in

the fundamental and third frequenc-ies. The crack on girder 6 would, on
the other hand, produce negligible change in the third frequency while

causing changes greater than 1% in the other two frequencies. The

effects of cracks are, by no means, linearly additive. Qualitatively,

however, a certain crack contributes most to the decrease of that fre-
quency which would experience the largest decrease if that particular a4

crack were the only one present on the structure. This trend was illus-

trated by Example 5 on a cantilever beam in the previous chapter. The

uncertainty of damage diagnosis emerges from the measurability of only a
few frequencies of a structure.

Damage diagnosis can be highly sensitive to Rj values at certain

locations of the Rjcurves. If, for example, R, is measured to be

0.010 instead of 0.011 in this example, then the possible damage pairs

will be

(e7, 91) = (0.795, 0.299) ; R~eq = 0.018

(e7, e6) = (0.295, 0.963) ; R3eq =0.094

together with their symmetrical counterparts.

There is a considerable change in the second pair while the first is
affected only slightly. In this case, the first pair would be selected
as the likely diagnosis since R~e is closer to the measured value of

0.005.
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5. CONCLUSION

In a previous report, damage diagnosis in simple structures was

studied [1]. In this report, analogy between beams and simple electrical

circuits has been utilized to extend the modal method of diagnosis to

multiple cracks and more complex frame structures. Computation of modal

frequencies of an n-story m-span frame with k cracks (the forward prob-

lem) requires inverting a matrix (or, equivalently, solving a linear

system) of order (n+k) and finding zeros of a deteminant of order

In(m+1) + 2k]. In finite element methods, using generally 20 elements

per basic beam segment, there are slightly less than 20n(2m+1) nodes each

with two degrees of freedom. The size of computation savings with analog

circuits is almost 40-fold. However, using circuit analogy in determin-

ing the location and intensity of a crack (the inverse problem of diagno-

ses with k=1) may involve n(2m+1) computations of zeros of a determinant

of order In(m+1) + 2) while inverting a matrix of order (n+1) each time,

since the crack can be on any one of the n(2m+1) elements of the frame.

On the other hand, modal frequencies of a cantilever beam with k cracks

can be computed with analog T circuits by inyerting a matrix and finding

zeros of a determinant, both of the order (k+1).

It is shown, in the report, that closely spaced multiple cracks can

be effectively represented by a single crack for which the sensitivity

number e is approximately equal to the sum of the individual sensitivity

numbers. Uncertainty exists, however, in diagnosing such a damage as to

whether there is only one major crack or several closely spaced minor

cracks. Nevertheless, location of the damage can be identified quite

accurately.

In the case of a structure with several cracks, only one of which is

severe, it is possible to diagnose the major crack. The contributions of

minor cracks to frequency decreases is small compared to that of the

severe crack. The relative frequency changes, Rj, in such a situation,

exhibit a trend similar to that which would be observed were the major

crack the only crack present on the structure. If there is more than one

major crack, not closely spaced, on the structure, it is, in general, not

possible to diagnose deterministically the damage with only three Rj
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values known, although the minimum number of cracks may be estimated.
Currently, the effect of damping is being investigated as a means to

render diagnosis of such damage. Curves of relative frequency changes,
Rversus crack location yield valuable information regarding damage

diagnosis. It may be psssible to estimate damage location, provided

there is only one major crack, by only looking at the relative magnitudes

of frequency decreases and using the relative-change curves. The process
may be tedious for more complex structures. Nevertheless, such curves

can be of qualitative help to the numerical results. However, when

cross-over occurs in the modal frquencies, Rj curves cannot be used
unless the correspondence between tihe pre-and post-damage frequencies is

known. The approach described in Section 3.2 eliminates the effect of:

the cross-over problem on diagnosis of a major crack by eliminating the
need to know this correspondence.

In diagnosing damage in a structure, given three post-damage charac-
teristic values, $, the solution is sought for a single crack since there

are not enough equations to solve for a larger number of cracks. It is

shown that the same 0 values can be produced by one crack or a combina-
tion of several cracks. Consideration must then be given to whether it
is more likely, during a strong motion event, to produce a few major

cracks or several minor cracks. In solving for a single crack, (i.e.,

for eeq and eeq) two measured s values are actually used first. The

third measured B value is then compared with the computed counterpart,
which would be produced by the crack with the characteristic pair

(eeq,Beq). It is shown that the two 6 values may not match closely .

even though the diagnosis is accurate (that is, e eq and 9eq identify the

major crack correctly), the discrepancy possibly being due to the pre-
sence of other minor cracks. If the discrepancy is large, then the solu-

tion is rejected with the conclusion that there is more than one major

crack. On the other hand, the choice of the pair of measured 8 values

to be used in computing e and a may affect the diagnosis. In someeq eq
cases, choosing the two characteristic values which correspond to the

largest two Rjvalues leads to the correct diagnosis. It is not clear,
however, what the right choice is in each case.
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Finally, for frame structures, the change in frequencies due to

cracks is relatively small. Furthermore, damage diagnosis can be highly

sensitive to Rj values in certain cases. Therefore, accuracy in field

measurement of the structural response is of extreme importance. ,
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APPENDIX

1. T-Circuit Equations:

Z Z E2

+ I~~+

Yi' 2)11  Y2.

In this part, the circuit equations which relate the input-output

voltages (yl', Y2') of a T circuit to the input-output currents (M1, M2)

are developed. The terms input and output refer to the left and right

ports of the circuit in the figure and are used in a relative sense. In

Figure 2 in the text, the currents M1 and M2 were shown at the branches

of the circuit (as input and output currents) whereas in the above figure

they are shown as mesh currents. In principle, there is no difference

between the two. However, the latter is conceptually more helpful in

developing the circuit equations.

The two sides of the circuit in the figure can be considered as

meshes. The sum of the voltages around each mesh is equal to zero

(Kirchhoff's voltage law). Hence,

E + (Z + Zo) - ZoM 2 - y1  -

-E 2 + (Z + ZO)M 2 - ZoM1 + Y2 ' = 0

where E and Z are the voltage source and impedance, respectively.
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These equations can be solved for the voltages; that is,

y1' , (Z + Zo)MI - Zot 2 + El

Y2' a ZOF 1 " (Z + ZO)M 2 + E2

which are the same as Equations (8) in the text.

2. ii-Circuit Equations:

_______________

y; G, y; M2

In this circuit, there are two nodes, with node voltages yj' and

Y2', and a reference node, Yo' which is assigned a zero voltage. G and

Go are conductances and I1 and 12 are current sources. The sum of the

currents entering each node is zero (Kirchhoff's current law). Hence,

for nodes 1 and 2

M, - I, - G(y ' - yo') - Go(y 1 ' - y 2 ') = 0

M2 + 12 - G(y2 ' - Yo') - GO(Y 2 ' " yl') = 0

The term Go(y 1 ' - Y2'), for instance, denotes the current flowing through

the conductance Go from the node 1 to the node 2. There is a minus sign

in front of the term since, in the first equation, currents entering the

first node are taken to be positive. The equations can be solved for the

currents M, and M2 ; hence, with Yo' a 0,

1 - (G + Go)j- - GoY 2 . + 12
M2 a GOyj ' - (G + Go)Y 2 ' + 12

which are the same as Equations (21) in the text.
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